Protein phosphatase 5 is required for ATR-mediated checkpoint activation.

نویسندگان

  • Ji Zhang
  • Shideng Bao
  • Ryohei Furumai
  • Katerina S Kucera
  • Ambereen Ali
  • Nicolas M Dean
  • Xiao-Fan Wang
چکیده

In response to DNA damage or replication stress, the protein kinase ATR is activated and subsequently transduces genotoxic signals to cell cycle control and DNA repair machinery through phosphorylation of a number of downstream substrates. Very little is known about the molecular mechanism by which ATR is activated in response to genotoxic insults. In this report, we demonstrate that protein phosphatase 5 (PP5) is required for the ATR-mediated checkpoint activation. PP5 forms a complex with ATR in a genotoxic stress-inducible manner. Interference with the expression or the activity of PP5 leads to impairment of the ATR-mediated phosphorylation of hRad17 and Chk1 after UV or hydroxyurea treatment. Similar results are obtained in ATM-deficient cells, suggesting that the observed defect in checkpoint signaling is the consequence of impaired functional interaction between ATR and PP5. In cells exposed to UV irradiation, PP5 is required to elicit an appropriate S-phase checkpoint response. In addition, loss of PP5 leads to premature mitosis after hydroxyurea treatment. Interestingly, reduced PP5 activity exerts differential effects on the formation of intranuclear foci by ATR and replication protein A, implicating a functional role for PP5 in a specific stage of the checkpoint signaling pathway. Taken together, our results suggest that PP5 plays a critical role in the ATR-mediated checkpoint activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit.

In higher eukaryotic organisms, the checkpoint kinase 1 (Chk1) contributes essential functions to both cell cycle and checkpoint control. Chk1 executes these functions, in part, by targeting the Cdc25A protein phosphatase for ubiquitin-mediated proteolysis. In response to genotoxic stress, Chk1 is phosphorylated on serines 317 (S317) and 345 (S345) by the ataxia-telangiectasia-related (ATR) pro...

متن کامل

Cdc5L interacts with ATR and is required for the S-phase cell-cycle checkpoint.

Cell division cycle 5-like protein (Cdc5L) is a core component of the putative E3 ubiquitin ligase complex containing Prp19/Pso4, Plrg1 and Spf27. This complex has been shown to have a role in pre-messenger RNA splicing from yeast to humans; however, more recent studies have described a function for this complex in the cellular response to DNA damage. Here, we show that Cdc5L interacts physical...

متن کامل

ATM/ATR checkpoint activation downregulates CDC25C to prevent mitotic entry with uncapped telomeres.

Shelterin component TRF2 prevents ATM activation, while POT1 represses ATR signalling at telomeres. Here, we investigate the mechanism of G2/M arrest triggered by telomeres uncapped through TRF2 or POT1 inhibition in human cells. We find that telomere damage-activated ATR and ATM phosphorylate p53, as well as CHK1 and CHK2, thus activating two independent pathways to prevent progression into mi...

متن کامل

A PP4-phosphatase complex dephosphorylates gamma-H2AX generated during DNA replication.

The histone H2A variant H2AX is rapidly phosphorylated in response to DNA double-stranded breaks to produce gamma-H2AX. gamma-H2AX stabilizes cell-cycle checkpoint proteins and DNA repair factors at the break site. We previously found that the protein phosphatase PP2A is required to resolve gamma-H2AX foci and complete DNA repair after exogenous DNA damage. Here we describe a three-protein PP4 ...

متن کامل

Mice lacking protein phosphatase 5 are defective in ataxia telangiectasia mutated (ATM)-mediated cell cycle arrest.

Protein phosphatase 5 (Ppp5), a tetratricopeptide repeat domain protein, has been implicated in multiple cellular functions, including cellular proliferation, migration, differentiation and survival, and cell cycle checkpoint regulation via the ataxia telangiectasia mutated/ATM and Rad3-related (ATM/ATR) signal pathway. However, the physiological functions of Ppp5 have not been reported. To con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 25 22  شماره 

صفحات  -

تاریخ انتشار 2005